NMR analysis of covalent intermediates in thiamin diphosphate enzymes.
نویسندگان
چکیده
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using (1)H NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.
منابع مشابه
Identification of Charge Transfer Transitions Related to Thiamin-Bound Intermediates on Enzymes Provides a Plethora of Signatures Useful in Mechanistic Studies
Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichrois...
متن کاملMechanisms of acetohydroxyacid synthases.
Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies...
متن کاملActivation of thiamin diphosphate in enzymes.
Activation of the coenzyme ThDP was studied by measuring the kinetics of deprotonation at the C2 carbon of thiamin diphosphate in the enzymes pyruvate decarboxylase, transketolase, pyruvate dehydrogenase complex, pyruvate oxidase, in site-specific mutant enzymes and in enzyme complexes containing coenzyme analogues by proton/deuterium exchange detected by 1H-NMR spectroscopy. The respective dep...
متن کاملStructural Views along the Mycobacterium tuberculosis MenD Reaction Pathway Illuminate Key Aspects of Thiamin Diphosphate-Dependent Enzyme Mechanisms.
Menaquinone (MQ) is an essential component of the respiratory chains of many pathogenic organisms, including Mycobacterium tuberculosis (Mtb). The first committed step in MQ biosynthesis is catalyzed by 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD), a thiamin diphosphate (ThDP)-dependent enzyme. Catalysis proceeds through two covalent intermediates as the sub...
متن کاملThe catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography.
Enzymes that use the cofactor thiamin diphosphate (ThDP, 1), the biologically active form of vitamin B(1), are involved in numerous metabolic pathways in all organisms. Although a theory of the cofactor's underlying reaction mechanism has been established over the last five decades, the three-dimensional structures of most major reaction intermediates of ThDP enzymes have remained elusive. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 42 26 شماره
صفحات -
تاریخ انتشار 2003